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1. Introduction and summary

An important question of particle physics is the nature of supersymmetry breaking and

its mediation to the MSSM particles. In the phenomenological approach the main mo-

tivation for introducing supersymmetry is the resolution of the gauge hierarchy problem.

Introduction of the superpartners results in the cancellation of all quadratic divergences in

the theory. However, this on its own does not give an explanation for the energy scale of

supersymmetry breaking and why it is so much smaller than the Planck scale. The general
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answer to this question involves an asymptotically free gauge force (in a hidden sector of the

theory, i. e. outside the Standard Model) which becomes strong at low energies, and then

non-perturbative effects trigger spontaneous supersymmetry breakdown. This mechanism

is known as dynamical supersymmetry breaking (DSB).

Until recently, it was presumed that DSB requires that non-supersymmetric vacuum

state of the hidden sector is the true vacuum, i. e. the global minimum of the effective

potential. In models where supersymmetry breaking is transmitted to the Standard Model

by gauge interactions (a.k.a. gauge mediation), this requirement is hard to satisfy, which

made DSB models and the mediation mechanism to the Standard Model sector rather

complicated. ISS [1] proposed a simple DSB model in which the non-supersymmetric

vacuum state is metastable with a very low tunneling rate to the true supersymmetric

vacuum. The ISS model has a large unbroken flavor symmetry, which can be weakly

gauged without spoiling the DSB mechanism. This makes it a convenient framework for a

direct gauge mediation of supersymmetry breaking to the Standard Model, where some of

the DSB-sector particles are also charged under the Standard Model SU(3) × SU(2) ×
U(1) gauge group. In such models, all the superpartners of Standard Model particles

become massive via 1-loop and 2-loop diagrams, and their masses are calculable in terms

of the DSB sector parameters.

However, in order to build a model of direct gauge mediation, one needs to overcome

two features of the ISS model, which are problematic for phenomenology. The first issue is

the presence of an accidental R-symmetry, that forbids the generation of gaugino masses.

The second issue is the spontaneous breaking of the flavor symmetry group, that introduces

Goldstone bosons charged under the Standard Model gauge group. We will resolve both

issues by breaking explicitly the R-symmetry and the flavor symmetry by mass terms that

deform the ISS model [2].1

The model that we will study in this paper is weakly coupled and calculable. The

LSP gravitino is light (m 3
2
< 16 eV), as required by the cosmological bounds [8] for gauge

mediation, and the MSSM spectrum is natural with a light Higgs. In particular, at the

expense of genericity, we obtain a model where there is no tension between a long lifetime

of the metastable vacuum and a large gaugino/scalar mass ratio, which typically leads

to split supersymmetry. The supersymmetry breaking sector, which is usually hidden, is

observable (m ∼ 1 TeV). We discuss in detail its features, its production cross section at

LHC and some of its decay channels. Due to approximate symmetries of the model, the

decays of such light exotic particles are strongly suppressed. They may be a candidate for

cold dark matter.

It is generically difficult to avoid a Landau pole in models of direct gauge mediation.

In our model as well, the QCD coupling runs very fast above a certain scale, hitting a

Landau pole below the GUT scale. We propose a UV completion in terms of a duality

cascade [9 – 11] by embedding the MSSM coupled to the supersymmetry breaking sector

in a quiver gauge theory. When the QCD coupling hits the Landau pole, the first step of

the duality cascade is triggered and we discuss it. The perturbative unification in the dual

quiver is still an open issue.

1Other recent analysis of direct gauge mediation using various deformations of the ISS appear in [3 – 7].
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The paper is organized as follows. In section 2 we review the ISS model and its

deformation and we identify the metastable vacuum. In section 3 we discuss the various

requirements that constrain the parameter space of the model, such as a light gravitino,

the absence of tachyons and a long lifetime of the metastable vacuum. In this section we

also discuss the generation of the soft terms in the MSSM. In section 4 we discuss in detail

the phenomenology of the light particles coming from the supersymmetry breaking sector,

which in our case will be observable at LHC. In section 5, we present the salient features of

the MSSM spectrum, after taking into account the RG evolution from the messenger scale

down to the TeV scale. In section 6 we propose a particular UV completion of our model,

in terms of a duality cascade, by embedding the MSSM coupled to the supersymmetry

breaking sector into a quiver gauge theory. There are three appendices in which we outline

some calculations.

2. The supersymmetry breaking vacuum

In order to construct a model of direct gauge mediation based on the ISS one, we embed

the MSSM gauge groups into the flavor symmetry group of the ISS. However, we need to

overcome two of the ISS features which are problematic for phenomenology: the presence

of an accidental R-symmetry, that forbids the generation of gaugino masses, and the spon-

taneous breaking of the flavor symmetry group, that introduces Goldstone bosons charged

under the would-be MSSM gauge groups. We will consider a model that is a deformation

of the ISS one, which has been proposed by [2].

2.1 Deformation of the ISS model

We will work in the magnetic dual description of N = 1 SU(Nc) SQCD withNf flavors. The

magnetic gauge group is SU(N) (N = Nf−Nc) and we haveNf flavors of (magnetic) quarks

and antiquarks q̃f and qf̃ , coupled toN2
f singlet chiral superfields Φf̃

f , via the superpotential

W = hTr q̃Φq − hµ2Tr Φ , (2.1)

with the second term corresponding to the mass term of the electric quarks. This the-

ory has a global SU(Nf ) × U(1)B × U(1)R symmetry, which is spontaneously broken to

SU(N)diag×SU(Nf−N)×U(1)R in the ISS vacuum by the expectation value q̃q = µ21N. In

order to avoid the Goldstone bosons, we explicitly break the global symmetry by splitting

the fields as

Φ =

(
YIJ ZIa
Z̃aI Φ̂ab

)
, q =

(
χIJ
ρIa

)
, q̃t =

(
χ̃IJ
ρ̃aI

)
, (2.2)

where I, J = 1, . . . , Nf −Nc ≡ N and a, b = 1, . . . , Nf −N = Nc and split the linear term

−hµ2Tr Φ → −hm2Tr Y − hµ2Tr Φ̂ . (2.3)

We will see that we need to work in the regime of parameters µ < m. This corresponds in

the electric theory to having Nc light flavours (Q̃a, Qa) and Nf−Nc heavier ones (Q̃I , QI).
2

2It has been shown in [12] that SU(Nc) SQCD with a number of light flavors less than Nc does not have

an ISS metastable vacuum, due to a two loop effect that destabilizes it. In our case the number of light

flavors in the electric description is Nc and this two loop effect is absent.
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Next, we need to break the R-symmetry, which we will do explicitly by adding a mass term

to the off diagonal components of the singlet h2mzTr Z̃Z [2]. This corresponds to a quartic

coupling of the electric quarks Tr(QaQIQ̃aQ̃I).

The final superpotential reads

W = hTr
(
χ̃Y χ+ ρ̃Zχ+ χ̃Z̃ρ+ ρ̃Φ̂ρ

)
− hm2Tr Y − hµ2Tr Φ̂ + h2mzTr Z̃Z . (2.4)

We will use this model for a direct mediation of supersymmetry breaking and analyze its

phenomenological features. The relevant parameters are the dimensionless coupling h, the

dimension one mass parameters (µ,m,mz) and the dimension one magnetic scale Λm. At

energies E < Λm we have the weakly coupled magnetic description (2.4) with a canonical

Kahler potential and at E > Λm we have an electric description. At certain higher energies

we need UV completion. We will constrain the parameters by consistency and experimental

requirements.

The mass term h2mzTr Z̃Z breaks R-symmetry, thus allowing gaugino masses. Gener-

ically, such a breaking creates new supersymmetric vacua [13], and the longevity of the

metastable vacuum requires small gaugino masses compared to the scalar masses (split

supersymmetry). However, the superpotential (2.4) is not generic, i.e. a generic one would

include also quadratic and cubic terms in Φ̂, and it does not introduce new supersymmetric

vacua. We will see that dimensionless parameter mz

m controls the split between the gaugino

and squarks masses, while the longevity of the metastable vacuum is controlled by µ
m . Hav-

ing two parameters will allow us to avoid split susperymmetry, while maintaining longevity.

2.2 Classical vacua

The model (2.4) does not have classical supersymmetric vacua, but only supersymmetry

breaking ones. Nonperturbatively, a supersymmetric vacuum appears, parametrically far

in field space [2].

The classical vacua are:

• The ISS vacuum:

χIJ = mδIJ , χ̃IJ = mδIJ , (2.5)

and all other fields in (2.4) have zero vev. Φ̂ is a pseudomodulus, namely it is a

classically flat direction which is lifted at one loop. This is the vacuum on which we

will base the analysis. The superpotential around this vacuum takes the form

W = hTr
(
ρ̃Zχ+ χ̃Z̃ρ+ ρ̃Φ̂ρ+mρ̃Z +mZ̃ρ− µ2 Φ̂ + hmz Z̃Z

)
+ · · · (2.6)

where we shifted χ→ m+ χ and χ̃→ m+ χ̃ and we omitted the terms involving Y ,

which are not relevant for the rest of the discussion. The classical vacuum energy is

V = VISS = (Nf −N)|hµ2|2 . (2.7)

At one loop, a potential for the pseudomodulus is generated that gives a mass and

an expectation value to Φ̂

V 1(Φ̂) = M2
Φ̂
TrNf−N |Φ̂ − Φ̂0|2 , (2.8)

where the explicit values of MΦ̂ and Φ̂0 are given by (A.5) and (A.6).
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• N additional supersymmetry breaking vacua where, on top of (2.5), we have also

ρ = ρ̃t = µ 11n ,

Zt = Z̃ = − µm

hmz
11n ,

Y =
µ2

hmz
11N , Φ̂ =

m2

hmz
11n , (2.9)

with classical vacuum energy

Vn = (Nf −N − n)|hµ2|2, n = 1, . . . , N . (2.10)

Thus, the lowest energy perturbative supersymmetry breaking vacuum of the theory

is given by n = N .

Nonperturbatively, a dynamical superpotential is generated, which introduces super-

symmetric vacua related to gaugino condensation in the SU(N) gauge group. These extra

vacua are very far in the Φ̂ field direction [2].

2.3 R-symmetry breaking

R-symmetry breaking generates soft masses for the gauginos. In the limit of vanishing mz,

the model reduces to the original ISS one [1], which has an R-symmetry with

R(Φ) = 2, R(q) = R(q̃) = 0 , (2.11)

that forbids gaugino masses but not sfermion masses, when we embed the MSSM gauge

group into the flavor group. There is a tension between R-symmetry breaking which generi-

cally introduces new supersymmetry vacua, raising the issue of longevity of the vacuum and

having gaugino and sfermion masses of the same order, leading to a split supersymmetry

scenario.

Our model is in the regime µ/m ≪ 1 and mz/m ∼ 1. When µ = 0, the theory does

not reduce to the ISS one: the F-term F †

Φ̂
vanishes, restoring supersymmetry. The moduli

space of supersymmetric vacua is parameterized by Φ̂ and Nelson-Seiberg’s theorem [13]

is evaded, because in the vacuum (2.5) there is a different (than the ISS one) unbroken

R-symmetry U(1)R′ , under which Φ̂ has zero R-charge and

R′(ρ) = R′(ρ̃) = R′(Z) = R′(Z̃) = 1, R′(Y ) = 2, R′(Φ̂) = 0 . (2.12)

Embedding the MSSM gauge group into the global SU(Nf − N), and parameterizing the

gaugino and scalar masses schematically as

Λg = FΦ̂ ×R 1
2
, Λ2

s = |FΦ̂|2R2
0 , (2.13)

then U(1)R′ allows for R 1
2

and R0 of the same order, but it restores supersymmetry en-

forcing FΦ̂ = 0. Note, in comparison, that the R-symmetry of the original ISS model is

problematic for phenomenology because it enforces R 1
2

= 0, with R0 and FΦ̂ non-vanishing.

When we switch on a small µ, we break the U(1)R′ explicitly and supersymmetry sponta-

neously, by the vev of FΦ̂. Moreover, we do not introduce any new supersymmetry vacua

coming in from infinity of field space, as it would happen if the superpotential deformation

that breaks explicitly R-symmetry were generic in the sense of [13].

– 5 –
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3. Direct mediation of supersymmetry breaking

In order to build a model for direct mediation of supersymmetry breaking, we embed the

Standard Model gauge group in the global symmetry group SU(N)×SU(Nf−N), i.e. we get

the Standard Model gauge group by gauging a subgroup of the flavor symmetry group. The

embedding of the MSSM into SU(N) has been discussed by [2]. In that case, one achieves

perturbative unification but the gravitino mass exceeds the cosmological bounds [8]. It

might be possible to get in this embedding a light gravitino, though giving up perturbative

unification.

We follow a different route and embed the MSSM gauge group in the unbroken flavor

symmetry group SU(Nf − N) and require Nf − N ≥ 5. In the analysis we will take

Nf = 6, N = 1, so the DSB sector reduces to a deformation of an O’Raifeartaigh model,

and we will use the metastable vacuum (2.5). The messenger fields are {ρ, ρ̃, Z, Z̃}, and

they couple through the superpotential to Φ̂ whose F-term FΦ̂ breaks supersymmetry. Note

that {ρ, ρ̃, Z, Z̃} and Φ̂ are charged under the MSSM gauge group and couple to the MSSM

fields through gauge interactions. For the reader’s convenience, we collected their MSSM

quantum numbers in appendix C.

The important scales in gauge mediation models are the messengers mass and the

supersymmetry breaking scale. Their ratio times a gauge loop factor determines the scale

of soft supersymmetry breaking terms. This model has two additional scales: Λm, which

is the cutoff of the magnetic theory, and the mass of the pseudomodulus Φ̂. This mass is

generated by the Coleman-Weinberg potential, and similarly to the soft mass terms it is

determined by the ratio of the supersymmetry breaking scale and the messenger masses.

However, instead of the gauge coupling, we multiply by the DSB sector Yukawa coupling

h2 which leads to a new scale in the theory. The various scales and their dependence on

the input parameters are depicted in figure 1. Note also that in this model the messengers

are linear combinations of ρ and Z, therefore we have two messengers with different masses

m 1
2
− and m 1

2
+. In the following we will present the constraints on the parameters of the

model and the features it presents. Details of the spectrum and predictions of the model

will be given later. Aspects of the analysis are outlined in the appendices.

3.1 Constraints on the parameter space

The direct mediation model contains one dimensionless coupling h, three dimensionful

parameters (µ,mz,m) and the magnetic scale Λm. We now briefly list the phenomenological

and theoretical constraints imposed on the parameter space:

• h: The dimensionless parameter h can be written up to an order one constant in terms

of the magnetic and electric scales. h
4π is used for a perturbative expansion, therefore

we require that h is at most ∼ O(1). When we analyze in detail the spectrum of the

model and take into account the LEP bound on the Higgs mass we find that h > 1.

We will present a detailed analysis for the case h = 2.

• h,µ: The gravitino has to be light in order to be consistent with cosmological

– 6 –
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Figure 1: The various energy scales and parameters of the model.

bounds [8], i.e.

m 3
2

=
F√

3MP l

< 16 eV . (3.1)

where the supersymmetry breaking scale F is the square root of the value of the

potential at the supersymmetry breaking minimum. This can be translated into a

constraint on h and µ:

hµ2 =
F

Nf −N
< (150TeV)2 . (3.2)

• m,µ: The relation between the parameters µ and m has two effects. On the one hand

the ratio µ
m controls the longevity of the metastable vacuum and we get an upper

bound µ
m < 1

5 . On the other, the ratio µ2

m determines the soft supersymmetry breaking

terms (m controls the messenger masses while µ controls the supersymmetry breaking

scale) and is therefore constrained from below by bounds from the MSSM spectrum.

• mz: The parameter mz plays a triple role. It controls the R-symmetry breaking,

allowing gaugino masses. The dimensionless parameter mz

m controls the split between

the gaugino and squarks masses, i.e. for mz

m ∼ 1 we avoid split supersymmetry.

In order to avoid a negative mass for the messenger we require

|m2 ± hmzΦ̂0|2 > µ2(m2 + h2m2
z) , (3.3)

– 7 –
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Figure 2: Numerical evaluation of the bounce action for the decay to the closest vacuum in figure

as a function of mZ .

this can be translated to constraints on mz. The parameter mz also plays a role in

determining the lifetime of the metastable vacuum, leading to an upper bound. This

bound depends on the value of h.

• Λm: The scale Λm is the scale at which the weakly coupled magnetic description (2.4)

breaks down: at energies E > Λm we have an electric description. Nonpertubative

effects restore supersymmetry at large values of Φ̂ [1]. To suppress the decay to this

true vacuum it is sufficient that Λm/m > 5. On the other hand, requiring that the full

messenger spectrum lies below the cutoff scale, we need approximately Λm/m > 10.

We will postpone the discussion of the UV completion of the model to section 6.

We are thus lead to a relatively small range in parameter space. Compiling all the above

considerations leads to a representative set of values for the input parameters:

h ∼ 2, µ ∼ 100TeV, m ∼ 500TeV, Λm > 5000TeV,

mz < 220TeV or 330TeV < mz < 650TeV . (3.4)

Other values of h in its allowed range will also lead to reasonable phenomenology with

similar features.

Let us give some more details on the constraints mentioned above.

3.2 Longevity

The ISS vacuum can decay either to the closest metastable vacua (2.9) or to the supersym-

metric vacuum generated by nonperturbative effects (in the case the magnetic gauge group

is non-empty supersymmetry restoration is related to gaugino condensation). In order to

have a long lifetime we require that the euclidean bounce action Sbounce for the decay from

the ISS into another vacuum is

Sbounce > 400 . (3.5)

In appendix B we evaluate the decay probability per unit time and unit volume from

the ISS vacuum to the closest supersymmetry breaking vacuum (2.9), for n = 1. In figure 2

we plot the bounce action and in figure 3 the effective potential for the bounce trajectory.

– 8 –



J
H
E
P
1
0
(
2
0
0
8
)
0
9
9

Figure 3: The effective potential for a real slice of the potential Veff(Φ̂) for the Φ̂ bounce trajectory.

The plot is evaluated at mZ = 150 TeV.

Let us consider now the nonperturbative supersymmetric vacuum. It is very far in field

space along the Φ direction, its position being proportional to the magnetic dynamical scale

Λm. The decay to this vacuum has been evaluated in [2] using the triangle approximation.

The euclidean bounce action is approximately given by

Sbounce ∼
(
m

µ

)4(Λm
m

) 4(Nf−3N)

Nf−N

. (3.6)

The decay is approximately independent of mz and by using our parameters we find that

the bounce action is much larger than the requirement (3.5).

3.3 Gaugino and squarks masses

We work in a regime where the F term FΦ̂ is smaller than the messenger scale µ2/hm2 ≪ 1,

and can use simple expressions to compute the gaugino and scalar soft masses. The gaugino

masses are

mr = αr

4πFΦ̂∂Φ̂ det logM
= αr

4πFΦ̂

∑
±

∂
Φ̂
M±

M±
, (3.7)

where M is the superpotential mass matrix3

M =

(
hΦ̂0 hm

hm h2mz

)
, (3.8)

and M± its eigenvalues

M± =

∣∣∣∣
1

2
h

(
hmz + Φ̂0 ±

√
4m2 + (−hmz + Φ̂0)2

)∣∣∣∣ , (3.9)

3We assume that doublet and triplet messengers have the same mass. In this case, the dangerous negative

contribution to the sfermion masses, proportional to the hypercharge D-terms, are absent [14].

– 9 –
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Figure 4: The effective number of messengers as a function of mz

m
varies between zero and two.

The plot is disconnected in the regime where mz is not allowed.

and Φ0 is given in the appendix (A.5). The final expression reads

mr =
αr
4π

Λg ,

Λg = N
h2µ2mz

m2 − hΦ̂0mz

. (3.10)

The scalar masses are given by

m2
f̃

=
3∑

r=1

2Cr
f̃

(αr
4π

)2
Λ2
s ,

Λ2
s =

1

2
N |FΦ̂|2

∂2

∂Φ̂∂Φ̂†

∑

±

(
log |M±|2

)2
,

= N |FΦ̂|2
∑

±

∣∣∣∣
∂Φ̂M±

M±

∣∣∣∣
2

. (3.11)

The gaugino masses and the scalar masses share the same dependence on the small

parameter µ/m, which is the one that controls the longevity of the vacua and the breaking

of supersymmetry. Hence, in the vacuum (2.5), we can relax the tension between having a

long lived metastable vacuum and large gaugino masses, thus avoiding a split supersymme-

try spectrum. In ordinary gauge mediation models the number of messengers is the ratio

Nmess = Λ2
g/Λ

2
s. This is not the case in our model, and we can define an effective messenger

number [15]

Neff(mz) = Λ2
g/Λ

2
s . (3.12)

By varying continuously mz

m , inside the region allowed by the phenomenological constraints,

Neff varies between zero and two (the number of messengers) as is shown in figure 4.

As mentioned above, the LSP in the model is the gravitino. A decay of an NLSP χ̃

to the LSP gravitino and a Standard Model particle, χ̃ → SM + G̃ is characterized by a

decay rate Γ ∼ m5
χ̃

16πF 2 , yielding a life time τ ∼ 10−12sec and is observable in LHC.

4. A visible supersymmetry breaking sector

A crucial prediction of our model of direct mediation is the presence of light particles

coming from the supersymmetry breaking sector (figure 9). They are the fluctuations of

– 10 –
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some pseudomoduli and their superpartners, whose mass only arises at one loop and hence

it is suppressed by a 16π2 factor with respect to the typical scale of the DSB sector, the

messenger mass. Choosing a messenger mass of a few hundred TeV one obtains therefore

some exotic particles of a few TeV or lower. By embedding the MSSM gauge group into

the DSB sector unbroken flavor symmetry, we give MSSM quantum numbers to these light

DSB sector particles. In our model, the pseudomodulus comes from the traceless part of the

chiral superfield Φ̂, in the adjoint representation of SU(5) (its trace part is the Goldstino),

which decomposes in the following way under SU(3) × SU(2)L × U(1)Y

24 = (8,1)0 ⊕ (1,3)0 ⊕ (3,2)−5/6 ⊕ (3̄,2)5/6 ⊕ (1,1)0 , (4.1)

and we split accordingly the bosonic and fermionic components of Φ̂ as

Φ̂ = ϕ8 ⊕ ϕ3 ⊕ p̃⊕ p̃′ ⊕ S ,

ψΦ̂ = Ψ8 ⊕ Ψ3 ⊕ Ψp̃ ⊕ Ψ′
p̃ ⊕ ΨS , (4.2)

Note in particular the presence of a singlet fermion ΨS , that will play the role of lightest

DSB sector particle (LHP). The boundary conditions for the mass of (4.2) are the one loop

valuesMΦ̂, common for all the scalars (A.5), andMψ
Φ̂
, common for all the fermions (A.12).4

Starting from this value at the messenger mass, we run all the way down to the TeV scale,

coupling their RG flow equations to the MSSM ones as explained in appendix C. We

computed their RG improved masses by a modification of the SoftSUSY algorithm. After

the RG evolution, the masses of such particles will split according to the usual pattern:

colored particles become heavier than weakly interacting ones. We will discuss this light

sector in some detail.

4.1 Singlet

Consider the LHP ΨS. Its decay channels are two: a coupling to the Goldstino and a

Yukawa interaction with the messengers. In the theory MSSM plus DSB sector, there is

an exact R-parity, that combined with a second approximate Z2 symmetry will strongly

suppress the decays of the LHP. The exact R-parity, which we will denote by R, is the

usual R-parity of the MSSM combined with the DSB sector R-parity, under which the

DSB sector bosons (fermions) are even (odd). The second approximate Z2 symmetry, that

we will call P , is given by the usual R-parity of the MSSM combined with the following

involution of the DSB sector

P : {ψρ, ψZ , ψρ̃, ψZ̃} → {−ψρ̃,−ψZ̃ ,−ψρ,−ψZ} ,
{ρ, Z, ρ̃†, Z̃†} → {ρ̃, Z̃, ρ†, Z†} . (4.3)

Under the symmetry R, the LHP ΨS is odd, hence it can only decay to a final MSSM state

with odd R-parity. However, ΨS is even under P in (4.3), while the MSSM sparticles are

odd under P.

4We neglected the gauge contribution to their soft masses, which differs according to the quantum

numbers. Since it is of order the MSSM soft masses, it is significantly smaller than the leading DSB

Yukawa contribution.
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Φ̂

Ψρ

Ψρ̃

G̃

λ̃
ρ̃

ρ

Figure 5: The effective vertex for the decay of the pseudomodulus Φ̂ into a gaugino (λ̃ = B̃, W̃ , g̃)

and a gravitino.

Figure 6: The cross section for production of supersymmetry breaking sector colored particles in

the LHC as a function of their mass

If (4.3) were an exact symmetry of the theory, this would have implied that the ΨS

was exactly stable. However, the gaugino-fermion-scalar interaction in the DSB sector

breaks explicitly this symmetry. In the effective theory below the messenger scale, this

interaction produces the effective vertex in figure 5 that allows the offshell decay Φ̂ → λ̃G̃

of the pseudomodulus into a gaugino λ̃ and a gravitino G̃.

Therefore, the leading order decay channel of the LHP ΨS is into a final state with

one neutralino and two gravitini

ΨS → ÑG̃G̃ , (4.4)

where the first vertex is ΨS → SG̃ and the second vertex is the effective vertex S → ÑG̃ in

figure 5. Because this decay is hugely suppressed by a loop factor and (DSB sector) GIM

mechanisms, the singlet is extremely long lived. Depending on the details of its lifetime

and its relic abundance, it may provide a suitable dark matter candidate in some region of

our parameter space.

4.2 Colored

Let us estimate the production at LHC of the light DSB sector particles. The colored par-

ticles (8,1)0 and (3,2)−5/6, (3̄,2)5/6 are most likely produced, while the weakly interacting

ones and the singlet will have a much slower rate. As an example, let us estimate the pro-
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duction of the (3,2)−5/6 scalars, that we denoted by p̃. The electroweak doublet consists

of two squarks with electric charges Qem = (−1/3,−4/3). At the LHC, the production of

such particles occurs through the scattering of two gluons and of a quark-antiquark pair.

In the leading parton approximation, we can adapt the cross section for the production of

squarks [16] (setting to zero the Yukawa coupling contribution)

σgg→p̃ ¯̃p(s) =
2πα2

s

s

[
βp̃

(
5

24
+

31m2
p̃

12s

)
+

(
4m2

p̃

3s
+
m2
p̃

3s2

)
log

(
1 − βp̃
1 + βp̃

)]

σqiq̄j→p̃ ¯̃p(s) = δij
2πα2

s

s
βp̃

(
4

27
−

16m2
p̃

27s

)
. (4.5)

where βp̃ =
√

1 − 4m2
p̃/s and mp̃ is the mass of p̃ as we RG evolved it down to the

LHC energies.5The total hadronic cross section for the production of p̃ through proton-

proton→ p̃ ¯̃p scattering is the convolution of (4.5) with the parton distributions fi(x) [17]

in the proton at leading order

σp̃ ¯̃p(S) =
∑

i,j=g,q,q̄

∫
dx1

∫
dx2fi(x1)fj(x2)σij(s = x1x2S) , (4.6)

where
√
S = 14 TeV. In figure 6 we plot the cross sections as a function of the RG evolved

mass of p̃. In the regions in parameter space where the DSB sector particle Ψp̃ is heavier

than its superpartner p̃, the latter decays in a different way from the MSSM squarks.

Similar considerations apply as the ones in section 4.1, so the leading decay channel is into

a gluino and two gravitini

p̃→ g̃G̃G̃ . (4.7)

Note that this decay channel is highly suppressed, so the p̃ colored particles will travel a

long way before decaying, despite their high mass, with a very definite signature.

The estimate of production cross section at LHC for the light colored octet fermion

Ψ8 can be given as well, using the parton cross sections

σgg→Ψ8Ψ8(s) =
πα2

s

s

[
βΨ

(
−3 − 51M2

Ψ

4s

)
+

(
−9

4
− 9M2

Ψ

s
+

9M2
Ψ

s2

)
log

(
1 − βΨ

1 + βΨ

)]

σqq̄→Ψ8Ψ8(s) =
πα2

s

s
βΨ8

(
8

9
+

16m2
Ψ8

9s

)
. (4.8)

where βΨ8 =
√

1 − 4M2
Ψ8
/s and MΨ8 is the mass of Ψ8 as we RG evolved it down to the

LHC energies. Again, this octet is very longed lived, because of the suppression mechanism

in the decay. The leading decay channel of such particle is Ψ8 → g̃G̃G̃, namely it decays

into a gluino and two gravitini, through the effective vertex in figure 5. Again, the decay

is very suppressed, so the particles in the octet are very long lived.

5Since the final states are SU(2) doublets we include an overall factor of two in (4.5).
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4.3 Weakly interacting

Let us briefly discuss the light DSB sector particle Ψ3 in the (1,3)0. After electroweak

symmetry breaking, the triplet will split into (ψ+, ψ−, ψ0), where the superscript denotes

the electric charge. One loop electroweak effects will split the mass Mc of the two charged

particles with respect to the mass M0 of the neutral one. The mass of ψ± gets contribution

by charged and neutral current interactions

δMc =
α2

π
Mc(σW + cos θ2

WσZ + sin θ2
Wσγ) , (4.9)

where α2 is the running SU(2)L coupling and the loop integral

σI =

∫ 1

0
dx ln

(
xΛ2

(1 − x)2M2
c + xm2

i

)
, (4.10)

where I = W,Z, γ labels the gauge boson masses and Λ is a UV cutoff. The mass M0 of

ψ0 gets corrections from the charged current interaction only, δM0 = (α2/π)M02σW . The

relative mass shift ∆M = δMc − δM0 between the masses is UV finite and amounts to

∆M/Mc = 3×10−4, that is around 0.3 GeV. Hence, ψ0 is the lightest particle in the triplet

and it decays only through charged current interactions. Its leading decay channel is a four

body decay ψ0 → W̃±W∓G̃G̃, namely a wino-like chargino, a W-boson and two gravitini.

Therefore, it is very long lived, with a smaller decay rate than any other particle in the

light DSB sector, even the singlet ΨS . It may thus provide another dark matter candidate

in some region of our parameter space. We leave this issue to future investigations.

5. The detailed MSSM spectrum

The low energy spectrum of the theory was calculated using a modified version of SoftSUSY

2.0 [18]. The modifications allow introduction of multiple messenger scales, adjustment of

the MSSM β functions to include the contribution of the light fields in the supersymmetry

breaking sector (Φ̂), and they also enable running of the Φ̂ masses.

As discussed above, the seemingly large parameter space of the model is restricted to

a narrow window by theoretical and phenomenological constraints. We chose to focus on

the following set of parameters:

h = 2 , µ = 100TeV , m = 500TeV , 0.2 < mz/m < 1.2. (5.1)

The remaining parameter in the theory, Λm, does not affect the low energy spectrum.

In addition to the parameters of the supersymmetry breaking sector, there are two more

degrees of freedom introduced by the EWSB sector in the MSSM, for which we took the

following values:

5 < tan β < 35 , sgn(µ) = ±1 . (5.2)

In order to understand the dependence of the spectrum on the parameter mz/m, one

should examine how it affects the messenger masses, and the gaugino and scalar mass scales
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Figure 7: The messenger mass as a function of mz/m. In marked area the light messenger is too

light or tachyonic, hence we exclude it.

Figure 8: The soft supersymmetry breaking mass scales, Λs and Λg as a function of mz/m. Largest

values are obtained close to the light messenger region.

(Λg and Λs - see plots 8 and 7). In the range 0.45 < mz/m < 0.65 the light messenger

becomes tachyonic, therefore this range is excluded. As one gets further away from this

region, the messenger mass rises, leading to lower soft mass terms. Thus, the area of

parameter space nearest to the tachyonic region leads to the highest soft mass terms. In

the discussion below we show that this is an important condition for viable phenomenology.

The resulting spectrum has the general properties of ordinary gauge mediation with

low supersymmetry breaking scale:

• LSP : The LSP is a light gravitino (< 16 eV).

• NLSP : The NLSP is usualy a Bino like neutralino (20–200 GeV). For large tan β the

NLSP can be a stau (see figure 10).

• There exists a hierarchy between colored and color singlet particles.
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Figure 9: The masses of the visible fields from the supersymmetry breaking sector.

The new features that this model presents are:

• Visible supersymmetry breaking sector : A new set of particles, charged under the SM

gauge group, with masses in the range 1−10 TeV. While the mass of the bosons does

not vary much, the fermion masses are highly dependent on the ratio mz/m, and

they are split by the contribution of SM gauge loops to the RG flow. The lightest

particle is thus either the fermionic singlet adjoint or one of the bosons. For h = 2

the lowest mass they can get in the allowed range is ∼ 1 TeV (plot 9). However, for

lower values of h one gets lower masses. This is in fact the feature of the model which

is most influenced by the value of h.

• Tachyonic sleptons: When mz > 600 TeV the sneutrino becomes tachyonic, thus

excluding this part of parameter space. For large tan β, the stau can become tachyonic

at even lower mz (plot 10 ).

• Light Higgs mass: The Higgs mass is in the range 100−117 GeV, and the LEP bound

of mHiggs > 114.4 [19] rules out a large part of parameter space. A large Higgs mass

requires large values of Λs, and following the discussion above the allowed region will

be where the messengers are lighter, namely mz ∼ 200 TeV or mz ∼ 350 TeV. Also,

this constraint excludes tan β < 5 (see plots 12 and 13).

• Gaugino/scalar mass ratio (Neff ∼ 1): As discussed in section 3.3, the ratio between

gaugino masses and scalar masses (Neff) is controlled by the parameter mz, and gets

values between 0 and 2. However, the range preferred by the Higgs mass constraint,

leads to Neff ∼ 1, and no split supersymmetry. Moreover, taking low values of Neff
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Figure 10: The slepton masses as a function of mz/m. The stau mass is very sensitive to tanβ.

The sneutrino becomes tachyonic at mz/m > 1.2.

Figure 11: Masses of several sparticles in the spectrum as a function of mz/m.

(or equivalently 100TeV < mz < 150TeV) leads to very light Bino masses, and a

neutralino which is lower than 40 GeV.

• sgn(µ): The sign of µ is a free parameter in GMSB theories, but the different choices

lead to similar spectra (In this case the changes are smaller than 1%). The main

effect of taking the different signs is a change in the Bµ parameter, and different

chargino and neutralino mixing matrices (the NLSP remains Bino-like). In addition

to that, at large tanβ, where the stau mass is nearly tachyonic, a negative µ increases

the mass, thus increasing slightly the range of allowed parameters.

• The Bµ/µ problem: The couplings of the Higgs mixing terms, µ and Bµ, are not
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Figure 12: The Higgs mass as a function of mz/m: The LEP bound rules out a large region of

parameter space.

Figure 13: The Higgs mass as a function of Λs.

predicted by the model, but are determined by the values of the Z boson mass and

tan β. The computed values of Bµ/µ2 are approximately proportional to tanβ−0.8,

and are between 0.05 and 0.35 (plot 14). This means that the model has a strong B/µ

problem: in models where the Higgs mixing terms are generated dynamically, this

ratio is expected to be at the order of 16π2 — namely 2-3 orders of magnitude larger.

Varying the parameters in the allowed ranges discussed in section 3.1, for instance

by taking a different Yukawa within the range 1 < h < 2, leads to similar spectra. The

main difference is the lower masses of the ΨΦ fermions. In the range where the Higgs

mass satisfies the LEP bound, these masses remain above 1TeV. By decreasing h, the

constraints on the values of mz change: the excluded window where the light messenger

becomes tachyonic moves to larger values of mz.
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Figure 14: Bµ/µ2 as a function of tanβ for several values of mz

m
.

6. A duality cascade in the UV

In models of direct mediation in which the supersymmetry breaking sector is a deformation

of ISS there is a tension between a light gravitino with m 3
2
< 16 eV and gauge coupling

unification. To satisfy the first requirement, one needs a supersymmetry breaking scale

below a hundred TeV. On the other hand, the supersymmetry breaking sector contains a

large number of fields, charged under the MSSM gauge groups, which drive the running

couplings towards a Landau pole before reaching unification. This happens in our model

as well. We will consider a UV completion in terms of a duality cascade [9].6 The idea of

completing the MSSM with a duality cascade in the UV is typical of some string theory

embedding of the MSSM with D-branes at singularities. Examples of MSSM cascades have

been recently presented in [10] and [11]. Typically, one needs to couple an extra sector to

the MSSM in order to trigger the first step of the cascade. When we embed the MSSM

into a direct mediation model, the cascade is triggered naturally above a certain scale, due

to the presence of extra fields charged under the MSSM gauge groups (the messengers),

that drive the QCD coupling to a Landau pole.

Let us RG evolve our model to the UV.

Consider first the supersymmetry breaking sector. Above the magnetic cutoff scale

Λm, the supersymmetry breaking sector becomes strongly coupled and undergoes a Seiberg

duality [20]. Its weakly coupled description is in terms of a SU(Nc) SQCD with Nf light

flavors Qf and Q̃f , with Nc = 5 and Nf = 6, and a quartic superpotential coupling W =
1
MTr (Q̃aQ

1)Tr (QaQ̃1), which corresponds to the magnetic operator Tr Z̃Z in (2.6). The

electric description in terms of the quartic coupling is valid up to the scale M = Λ2
m/mz,

which is equal to the GUT scale if we take the magnetic cutoff at Λm = 5 × 107 TeV.7

Let us RG evolve the MSSM towards the UV. To properly understand the duality pat-

tern we will consider a minimal embedding of the MSSM and the supersymmetry breaking

6A different UV completion has been proposed by [2].
7The precise relation is M = Λ3

e/Λmmz, where Λe is the dynamical scale of the electric theory. We can

take Λe ∼ Λm up to incalculable coefficients of order one.
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Figure 15: Embedding of the MSSM (yellow) coupled to the supersymmetry breaking sector

(green) into a minimal quiver. The adjoints of SU(2) and SU(3) coming from the light DSB sector

are not drawn.

Figure 16: The first step of the cascade, after dualizing the QCD node of the MSSM from SU(3)

to SU(8) (in red). Dual mesons are red, dual quarks blue, the adjoints of SU(2) and SU(8) are not

drawn.

sector into a quiver gauge theory as shown in figure 15.8 We embed the MSSM into a

quiver with three nodes [21], which has a simple string theory realization with D-branes

at a C
3/Z3 singularity.9 The green nodes on the left correspond to the electric description

of the supersymmetry breaking sector above Λm. The running of the MSSM couplings is

large, due to the extra matter contribution from the supersymmetry breaking sector (see

figure 17) and the SU(3) coupling hits a Landau pole below the GUT scale at around

109 TeV, while all the other couplings are still perturbative. This triggers a Seiberg duality

on the SU(3) node, which has 11 flavors. In the dual quiver, in figure 16, the dual of the

QCD node is an asymptotically free theory with 8 colors and 11 flavors (in red). This is

the first step of the duality cascade, as we schematically depicted in figure 18. The MSSM

8We thank Sebastian Franco for discussions on this point.
9This quiver is slightly different from the MSSM in two aspects. The first is the presence of two

extra anomalous U(1) gauge bosons, however they will get a large mass through the usual Green-Schwarz

mechanism for anomaly cancelation. Second, there are two extra pairs of Higgs doublets. A superpotential

mass for the Higgs is forbidden by the global U(1) symmetries, however in string theory these symmetries

will be explicitly broken by nonperturbative effects. We assume that one can generate an appropriate µ

term for the light Higgses and a large mass for the two extra Higgs pair.
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Figure 17: MSSM running couplings with the various thresholds. α3 hits a Landau pole at

0.8× 1010 TeV, triggering a duality cascade. The MSSM couplings formally unify at the GUT scale

at negative values.

Figure 18: The first step of the cascade, where the QCD node to SU(8) is dualized. In the second

step of the cascade the SU(2) is dualized.

matter content changes after the duality and, while the dual QCD node is weakly coupled,

the weak SU(2) becomes strongly coupled soon triggering the second step of the cascade.

The duality cascade will then proceed as discussed in [10] and [11]. The ranks of the gauge

groups and the matter content increase fast as one climbs up the UV cascade and at some

energy below the GUT scale the field theory description of the system will presumably

break down and be replaced by an appropriate string description as in [9]. The issue of

unification is still open, it is not unconceivable that the running couplings unify at some

point in the UV cascade.

7. Discussion

We have presented a detailed phenomenology of direct gauge mediation using a deformation

of the ISS vacuum, with explicitly broken R-symmetry. One of the aims of this model has

been to show that it is indeed possible to obtain a natural MSSM spectrum starting from

an ISS vacuum, and we have found on the way new interesting distinctive signatures of
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this model: an ultralight gravitino, compatible with the cosmological bounds; a light DSB

sector, which might be accessible at LHC energies; and long lived DSB sector particles,

which might result in cold dark matter candidates. We proposed a UV completion in

terms of a duality cascade that will eventually lead to a full string theory description

presumably below the GUT scale. The issue of unification is not resolved and deserves

further investigation.

One might modify the present model (2.4) by adding all the renormalizable operators

allowed by the global symmetries, namely the additional superpotential terms δWren =

gTr Φ̂2 + fTr Φ̂3. In this case the magnetic theory would be generic, in the sense of [13].

Another modification, inspired by string theory constructions, is obtained by adding all

the quartic superpotential terms in the electric theory [22], namely δWGK = h2mΦ̂Tr Φ̂2 +

h2mY TrY 2. In both cases, the effect of such operators would be twofold: first, they

introduce new classical supersymmetric vacua coming in from infinity. This will reintroduce

the tension between long lifetime of the ISS vacuum and non-vanishing gaugino masses that

we avoided in our model, pointing towards an unnatural split supersymmetric spectrum.

On the other hand, the tree level mass term for the pseudomodulus Φ̂ will raise the light

DSB sector particle masses, probably rendering them inaccessible at LHC energies.

We would like to briefly compare our phenomenology with other models of direct gauge

mediation obtained as deformations of ISS, to highlight similarities and differences (see the

summary in table 1. The first four models break explicitly R-symmetry, while the last one

breaks it spontaneously.

KOO model. In the original paper of [2], a different embedding of the MSSM gauge

group into the ISS flavor symmetry group was considered, namely into SU(N)diag. In this

case, one needs at least Nc = 11 and Nf = 16. To achieve perturbative unification, one

needs to push the messenger scale hm as high as 1010 TeV and in turn the F-term F = hµ2

is around 1011 TeV2, in order to get soft scalar masses of a few hundred GeV. With such

a supersymmetry breaking scale, one gets a gravitino mass m3/2 ∼ 50MeV, outside the

cosmological bounds of [8]. The pseudogoldstone boson coming from the fluctuations of

Re(χ−χ̃T ) and its fermionic superpartner may give a light supersymmetry breaking sector,

with particles in the fundamental representations of the MSSM gauge groups, unlike our

case in which the light DSB sector is in the adjoint and bifundamental (they will be beyond

the reach of the next colliders though). One may get rid of such light DSB sector particles

by gauging the U(1)B baryon symmetry.

Adding singlets. One can modify the ISS theory by adding extra singlets [3], with

explicit R-symmetry breaking superpotential interactions. The pseudomodulus gets an

expectation value and the gaugino masses are generated at cubic order in the F-term.

Since F/m2
mess ∼ 1, in this case the gaugino masses will be of the same order of the

sfermion masses, giving a natural spectrum, however the lightest messenger is very light

and can turn tachyonic. The supersymmetry breaking scale is around 100TeV, which

gives a gravitino mass of order 10 eV. The theory has a Landau pole for the QCD coupling

below the GUT scale, and a UV completion in terms of a duality cascade is suggested as
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model R/ MSSM Msusy m3/2 UV DSB sector

KOO [2] explicit natur. 105 TeV × GUT heavy

singlets [3] explicit natur. 102 TeV X cascade light

mesons [4] explicit split 103 TeV × GUT light

baryons [5] spont. split 104 TeV × pole light

ours explicit natur. 102 TeV X cascade light

Table 1: Summary of direct gauge mediation models based on ISS deformations.

well [3, 23].10 The low energy spectrum is similar to the one that we discussed in this

paper, with light particles coming from the fluctuations of the pseudomodulus Φ̂, with a

mass of a few TeV and the same quantum numbers as in (4.1).

Adding mesons. One can explicitly break R-symmetry by adding a quartic superpoten-

tial coupling in the magnetic quarks δW = (q̃q)2 as in [4]. In this case as well, the gaugino

masses are generated only at cubic order in the F-term and the ratio sfermion/gaugino

masses is around a hundred, giving a split supersymmetric spectrum. The supersymmetry

breaking scale is of order 103 TeV, yielding a gravitino mass around 1 keV, ruled out by the

cosmological bounds [8]. To get a lighter gravitino, one might lower the supersymmetry

breaking scale, but at some point the messengers become tachyonic and destabilize the

vacuum.

Adding baryons. For the particular choice Nf = 7, Nc = 5, the magnetic gauge group

is SU(2) and one can add a renormalizable operator to the superpotential in the form

of a magnetic baryon [5, 6]. This theory is generic and achieves a spontaneous radiative

breaking of the accidental R-symmetry of the ISS vacuum. In this case one realizes a split

supersymmetric spectrum, in which the sfermions are a hundred times heavier than the

gauginos. The R-axion is consistent with cosmological bounds, however the supersymme-

try breaking scale is around 104 TeV, which gives a gravitino mass of around 50KeV, not

consistent with the cosmological bounds [8]. This model has always a Landau pole in the

MSSM gauge couplings below the GUT scale.
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A. One-loop potential

The ISS vacuum (2.5), (A.7) has a pseudomodulus Φ̂. In this appendix, we compute the

one loop effective potential for the scalar pseudomodulus Φ̂, which gives it a mass and

10In a slight variation of the same model, R-symmetry can be spontaneously broken by the extra singlets.
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an expectation value, as well as the one loop mass for the fermionic superpartner of the

pseudomodulus ψΦ̂.

A.1 Scalar mass

Let us compute the masses of the bosons and fermions that couple to Φ̂ and get splitted

by its F-term. The mass matrix mixes (ρ, Z, ρ̃†, Z̃†) and (ρ†, Z†, ρ̃, Z̃). Its eigenvalues are

m2
1,±= h2

2

(
2m2+h2m2

z+|Φ̂|2−µ2 ±
√

4m2(hmz+Φ̂)(hmz+Φ̂∗)+(h2m2
z−|Φ̂|2+µ2)2

)
,

m2
2,±= h2

2

(
2m2+h2m2

z+|Φ̂|2+µ2 ±
√

4m2(hmz+Φ̂)(hmz+Φ̂∗)+(h2m2
z−|Φ̂|2−µ2)2

)
,

(A.1)

while the fermionic eigenvalues are obtained by (A.1) setting the F term µ2 to zero

M± =

∣∣∣∣
1

2
h

(
hmz + Φ̂0 ±

√
4m2 + (−hmz + Φ̂0)2

)∣∣∣∣ , (A.2)

There no tachyons if

|m2 ± hmzΦ̂|2 > µ2(m2 + h2m2
z) . (A.3)

The Coleman-Weinberg potential is

V (1)(Φ̂) =
1

64π2

(
Trm4

B log
m2
B

Λ0
− Trm4

F log
m2
F

Λ0

)
(A.4)

We use the expressions (A.1) and (A.2) just computed. The lengthy one loop expression

can be expanded at first order in the small parameter µ/m

M2
Φ̂

=
N

8π2

hµ4

m3
Z(4m2 + h2m2

Z)
7
2

f(h,m,mZ) ,

Φ̂0 =
hmZ(4m2 + h2m2

Z)g(h,m,mZ )

4m2f(h,m,mZ)
, (A.5)

where

f(h,m,mZ)=hmZ

√
4m2 + h2m2

Z(h2m2
Z −m2)(m2 + h2m2

Z)(2m2 + h2m2
Z)+

+m2(2m6 + 12h2m4m2
Z + 9h4m2m4

Z + 2h6m6
Z)·

· log
2m2 + h2m2

Z + hmZ

√
4m2 + h2m2

Z

2m2 + h2m2
Z − hmZ

√
4m2 + h2m2

Z

,

g(h,m,mZ)=hmZ

√
4m2 + h2m2

Z(−4m6 + 10h2m2
Zm

4 + 6h4m4
Zm

2 + h6m6
Z)+

+2m4(2m4−2h2m2m2
Z−h4m4

Z)log
2m2+h2m2

Z+hmZ

√
4m2+h2m2

Z

2m2+h2m2
Z−hmZ

√
4m2+h2m2

Z

,(A.6)

We can further expand at first order in h, or at first order in mz:

M2
Φ̂

=
N

48π2

h4µ4

m2
, Φ̂0 =

hmz

2
, (A.7)

where the mass term reproduces the familiar one loop correction to the O’Raifeartaigh

model.
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ΨΦ̂ ΨΦ̂ ΨΦ̂

Ψρ̃Ψρ

ρρ̃

ΨΦ̂

Figure 19: One loop mass Mψ of the fermionic partner ψ
Φ̂

of the pseudomodulus Φ̂

A.2 Fermion mass

The pseudomodulus Φ̂ has a fermionic superpartner ψΦ̂. Its mass is proportional to the vev

of the pseudomodulus and it is obtained by integrating out the heavy messengers through

the Yukawa interaction

L ⊃ −hTrψρψΦ̂ρ̃− hTrψΦ̂ψρ̃ρ+ h.c. . (A.8)

This interaction can generate two kind of mass terms at one loop. The Dirac mass ψ̄Φ̂ψΦ̂

vanishes but the Majorana mass term is non-vanishing: roughly speaking it is proportional

to the F-term times the expectation value of the pseudomodulus Φ̂ . In the original ISS,

the accidental R symmetry forces 〈Φ̂〉 = 0 hence the Majorana mass vanishes, while in our

case R symmetry is explicitly broken and the mass is non-zero.

We need to evaluate the one loop diagrams in figure 19. We switch from the interaction

eigenstates S = {ρ, Z, ρ̃†, Z̃†} and Ψ = {ψρ, ψZ}, Ψ̃ = {ψρ̃, ψZ̃} to the mass eigenstates

by using the fermionic mass matrix M in (3.8) and the bosonic mass matrix m2 and we

introduce the following mixing matrices

m̂2 = Q†m2Q , M̂ = U †MV ,

Ŝ = SQ , ψ̂+ = ψU , ψ̂− = ψ̃V ∗. (A.9)

where m̂2 and M̂ are diagonal matrices whose entries are the bosonic and fermionic mes-

senger mass eigenvalues. The interaction term reads

L ⊃ −hTr
(
ψ̂+pU

†
p1ψΦ̂Q3iŜ

†
i + ψΦ̂ψ̂−pV1pŜiQ

†
i1

)
+ h.c. (A.10)

and the mass term

L ⊃ −1

2
Mψ

Φ̂
TrψΦ̂ψΦ̂ + h.c. , (A.11)

is given by the loop integral11 in figure 19

Mψ
Φ̂

= −4h2
4∑

p=1

∑

i=1,2

Q3iQ
†
i1V1pU

†
p1

∫
d4k

(2π)4
M̂p

p2 + M̂2
p

1

p2 + m̂2
i

=
h2

4π2

4∑

p=1

∑

i=1,2

Q3iQ
†
i1V1pU

†
p1

M̂p

m̂2
i − M̂2

p

(
m̂2
i ln

m̂2
i

Λ2
− M̂2

p ln
M̂2

p

Λ2

)
. (A.12)

11The mass does not actually depend on the cutoff scale Λ that we inserted to regulate the integral, due

to the unitarity of the mixing matrices.
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The mixing matrices can be written using 3 angles

V11U
†
11 = cos2 θf V12U

†
21 = sin2 θf

Q31Q
†
11 = − cos2 θs1 Q32Q

†
21 = cos2 θs2

Q33Q
†
31 = − sin2 θs1 Q34Q

†
41 = sin2 θs2 (A.13)

where we defined

tan 2θf =
2m(hmz + Φ̂)

(hmz)2 − |Φ|2

tan 2θs1 =
2m(hmz + Φ̂)

(hmz)2 − |Φ|2 + µ2

tan 2θs2 =
2m(hmz + Φ̂)

(hmz)2 − |Φ|2 − µ2
(A.14)

and the mass eigenstates are ordered from the lightest to the heaviest.

B. Lifetime

We evaluated numerically the bounce action for the decay of the ISS vacuum into the

closest supersymmetry breaking vacuum (2.9) (namely the n = 1 vacuum). We consider the

classical plus one-loop potential V =
∑

i |Fi|2 +V1−loop, where the F-terms come from (2.4)

and the one-loop correction is given in (2.8) and (A.5). To simplify the computation, we

consider a toy model with a slice of the full potential in which we identify ρ = ρ̃, Z = Z̃

and we neglect the χ, χ̃ fields, which are fixed to (2.5) in both vacua and play no role. We

consider a real slice of the potential so that we are left with a function of four real variables

V (ρ, Z, Y, Φ̂) = 2h2(Zρ+mY )2 + 2h2(Φ̂ρ+mZ)2 + 2h2(hmZZ +mρ)2 (B.1)

+h2(ρ2 − µ2)2 +M2
Φ̂
(Φ̂ − Φ̂0)

2 . (B.2)

For mZ inside the phenomenological range (3.4), this function has three extrema, one

corresponding to the ISS vacuum, the second corresponding to the closest supersymmetry

breaking vacuum, and the third giving the saddle point that the bounce crosses in the

trajectory between the two vacua. We can plot a one dimensional slice of this potential

by the following procedure. Around the ISS vacuum, the lightest fluctuation is Φ̂, whose

mass arises only at one-loop. Hence, we can integrate out the massive fields ρ, Z, Y on

their equations of motion coming from (B.1) and obtain an effective potential for the real

Φ̂ field only, whose plot is given in figure 3.

The ISS vacuum is on the plateau on the left, while the other supersymmetry breaking

vacuum is on the right. The difference between the value of the potential at the extremum

and the ISS value is very small, compared to the difference between the potential at the

two vacua, so we can reliably use the triangle approximation to evaluate the bounce action.

The peak in the bounce trajectory is reached at

Φ̂ =
m2 − µ

√
m2 + h2m2

Z

hmZ
. (B.3)
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We evaluate numerically the bounce action and we see that, for mZ < 260TeV, the action

is larger than the critical value Sbounce ∼ 400 for mZ < 225TeV. In the range 330TeV <

mZ < 700TeV, on the other hand, the profile of the potential is reversed, still keeping the

same shape: the lower energy vacua (2.9) approach the origin of field space, while the ISS

vacuum is located at Φ̂0, which takes larger values. In this case the bounce action is always

very large, Sbounce ≫ 400. Hence, the requirement that the metastable vacuum be long

lived further constrains our parameter space to

mZ < 225TeV or 330TeV < mZ < 700TeV . (B.4)

C. RG flow

We list here the RG equation for the masses of the DSB sector light fields (4.2) coming from

the components of the pseudomodulus Φ̂ and its superpartner ψΦ̂. In the computation of

the low energy spectrum we need to include their running because their mass is one loop

suppressed with respect to the messenger mass, hence it is of the order of a TeV. Using

the general formulae in the conventions of [24] we find

(4π)2βm2(φi) = −8
∑

a=1,2,3

g2
aC

a(φi)|Ma|2 +
6

5
g2
1YiS ,

(4π)2βM(Ψi) = −6M(Ψi)
∑

a=1,2,3

g2
aC

a(ψi) , (C.1)

where S is the trace of the soft masses, weighted by the hypercharge.12 Note that we have

to add to the usual SMSSM in eq. (5.57) of [24] the contribution δS from the soft masses

of the light DSB sector fields that have non-vanishing hypercharge, namely p̃, p in (4.2).

The total expression appearing in (C.1) is thus S = SMSSM + δS where δS = 5m2
p̃′ − 5m2

p̃.

Note that the fermion masses run faster because their β function is proportional to the ΨΦ

mass, and not the gaugino mass.

The RGE in the MSSM have to be modified accordingly, by replacing SMSSM with the

full SMSSM + δS. The MSSM charges of the various DSB sector fields are collected in the

following table. The messengers (ρ, Z) are in the 5̄ of SU(5) and (ρ̃, Z̃) are in the 5. We

split them as ρ = (ρ3, ρ2) and so on, while the other fields come from (4.2)

ρ2, Z2 ρ̃2, Z̃2 ρ3, Z3 ρ̃3, Z̃3 ϕ8 ϕ3 p̃ p̃ ′ S

(1,2)−1/2 (1,2)1/2 (3̄,1)1/3 (3,1)−1/3 (8,1)0 (1,3)0 (3,2)−5/6 (3̄,2)5/6 (1,1)0

The contribution of Φ̂ to the β function of the gauge couplings was added at scales above

their masses.

Unlike ordinary GMSB models, where the model has a single value for the messengers

mass, in this model we have two messenger scales. This fact was partially accounted for by

12There would normally be a contribution from the Yukawa coupling h, but its threshold is above the

messenger mass. This contribution goes like log
M+

M
−

, where M± are the messenger masses, and was ne-

glected.
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taking the heavier messenger mass as the boundary scale, where the soft supersymmetry

breaking mass terms were calculated by integrating out only the heavy messenger. The

contribution of the lighter messenger was added as a threshold effect at the light messenger

mass scale. Between these scales the light messenger, which is a superfield at the funda-

mental representation of SU(5), contributes to the beta functions of the gauge coupling

and to the scalar masses

∆βmi
=

8

(4π)4
Str(S(r)M2)

3∑

a=1

g4
aCa(mi) . (C.2)

(S(r) is the Dynkin index of the messenger).

As mentioned above, the calculation of the low energy MSSM spectrum was performed

using the SoftSUSY software [18]. However, the discussed model required several impor-

tant modification for the RG flow due to the multiple messenger scales and the additional

visible fields.
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